Periodic solutions for the Schrödinger equation with nonlocal smoothing nonlinearities in higher dimension

نویسندگان

  • Guido Gentile
  • Michela Procesi
چکیده

We consider the nonlinear Schrödinger equation in higher dimension with Dirichlet boundary conditions and with a non-local smoothing nonlinearity. We prove the existence of small amplitude periodic solutions. In the fully resonant case we find solutions which at leading order are wave packets, in the sense that they continue linear solutions with an arbitrarily large number of resonant modes. The main difficulty in the proof consists in solving a “small divisor problem” which we do by using a renormalisation group approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-periodic Solutions of the Schrödinger Equation with Arbitrary Algebraic Nonlinearities

We present a geometric formulation of existence of time quasi-periodic solutions. As an application, we prove the existence of quasi-periodic solutions of b frequencies, b ≤ d + 2, in arbitrary dimension d and for arbitrary non integrable algebraic nonlinearity p. This reflects the conservation of d momenta, energy and L norm. In 1d, we prove the existence of quasi-periodic solutions with arbit...

متن کامل

Fully Discrete Schemes for the Schrödinger Equation. Dispersive Properties

We consider fully discrete schemes for the one dimensional linear Schrödinger equation and analyze whether the classical dispersive properties of the continuous model are presented in these approximations. In particular Strichartz estimates and the local smoothing of the numerical solutions are analyzed. Using a backward Euler approximation of the linear semigroup we introduce a convergent sche...

متن کامل

Smoothing for the Fractional Schrödinger Equation on the Torus and the Real Line

In this paper we study the cubic fractional nonlinear Schrödinger equation (NLS) on the torus and on the real line. Combining the normal form and the restricted norm methods we prove that the nonlinear part of the solution is smoother than the initial data. Our method applies to both focusing and defocusing nonlinearities. In the case of full dispersion (NLS) and on the torus, the gain is a ful...

متن کامل

On the stability of ground states in 4D and 5D nonlinear Schrödinger equation including subcritical cases

We consider a class of nonlinear Schrödinger equation in four and five space dimensions with an attractive potential. The nonlinearity is local but rather general encompassing for the first time both subcritical and supercritical (in L) nonlinearities. We show that the center manifold formed by localized in space periodic in time solutions (bound states) is an attractor for all solutions with a...

متن کامل

Nonuniqueness of Weak Solutions of the Nonlinear Schrödinger Equation

Generalized solutions of the Cauchy problem for the one-dimensional periodic nonlinear Schrödinger equation, with cubic or quadratic nonlinearities, are not unique. For any s < 0 there exist nonzero generalized solutions varying continuously in the Sobolev space H, with identically vanishing initial data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007